
1. BASIC PRIMITIVES (4/7)

Definition 1.1 A pseudo-random function (PRF) F is a deterministic algorithm that has two inputs: a key
k and an input data block x. Its output y := F (k, x) is called an output data block. The associated finite
spaces are: the key space K, the input space X , and the output space Y. We say that F is defined over
(K,X ,Y). [1]

If we could unconditionally prove that a PRG is secure, then this implies that P 6= NP. If P 6= NP then there
are tasks that are difficult to do with a poly-time algorithm. With a short witness (poly-size advice), then we
can solve NP problems. In particular, if you have the seed, then the PRG is completely deterministic and
you’ve solved P = NP.

1.0.1 How do we compare hardness in symmetric cryptography?

We often prove that a PRG is secure under the assumption that P 6= NP. This is the minimal assumption. If
a PRG exists and is secure, then P cannot be equal to NP. If this assumption is not enough, we have to make
even stronger hardness assumptions (we have to assume that problems are hard not only in the worst case,
but also in the average case; in other words, "average-case hardness").

Another standard assumption in symmetric cryptography is that one-way functions exist and are difficult to
invert in the average case (this is a stronger assumption than P 6= NP).

Definition 1.2 One-way function. A function f : Xλ → Yλ is one-way if for all efficient adversaries A:

Pr[x← Xλ : A(1λ, f(x)) ∈ f−1(x)]

Desired properties:

1. Efficiently computable

2. Hard to invert (on average). Every probabilistic poly-time algorithm can only invert the function with
some negligible probability.

As there are multiple possible values that can map to f(x), the notation indicates that the adversary only
needs to output one of them (i.e., any value in the pre-image of f(x)). The 1λ indicates that the adversary’s
input is at least as long as the length of the security parameter so taht it can run in at least time that is
polynomial in the security parameter.

Definition 1.3 Pseudorandom function (PRF). A PRF f : Kλ × Xλ → Yλ is secure if for all efficient
adversaries A:

PRFAdv[A, F] = |Pr[W0]− Pr[W1| < negl(λ)

For a security game wherein b ∈ {0, 1}, Wb is the output of A in this experiment:

1. The challenger chooses some value for b and selects k, f and computes y based on the chosen value for b.

1-1

2. The adversary can send queries xi ∈ X to which the challenger responds with yi. The adversary may
respond adaptively to the values returned by the challenger.

3. The adversary outputs Wb (or b̂) based on information gained in the game.

Definition 1.4 Pseudorandom permutation (PRP). A pseudorandom permutation is the same as a PRF,
but F (k, ·) is a permutation (a bijection).

In practice, we can consider a PRP as a block cipher; we directly assume that AES is a secure PRP.

1.0.2 Connections between basic primitives

Transformations between each of these primitives are reductions of the P = NP problems.

OWFs ↔ PRGs ↔ PRFs ↔ PRPs

The takeaway is that one-way functions are necessary and sufficient for symmetric cryptography. This is
why we view OWFs as the axioms of everthing in symmetric cryptography. Because all assumptions are
equivalent, we work with the simplest ones (OWFs).

1-2

2. FROM OWFS TO PRGS AND PRFS (4/9)

Recall: A central tool in symmetric cryptography is authenticated encryption. In CS255, we’ve seen
ways to construct a secure authenticated encryption scheme. In particular, we’ve seen that we can get secure
authenticated encryption schemes with simpler primitives like PRFs and PRPs.

Unfortunately, we don’t really know how to construct symmetric cryptographic primitives that are uncondi-
tionally secure. An unconditional proof of security of such primitives would solve P versus NP.

We can still get some provable security despite this limitation by reducing security of our primitives. We
reduce it to simpler and better-understood problems. We can construct provably secure PRFs and PRPs
from simpler primitives, namely OWFs.

Today we still use heuristic constructions like AES and HMAC to construct authentication systems since our
transformations from OWFs are not yet as efficient as we’d like.

2.0.3 Example candidates for OWFs

We call these candidates since we cannot prove them to be OWFs.

Number theoretic candidates:

• Factoring. f(x, y) = x · y for equal length primes x, y

• Discrete-log. fp,g(x) = gx mod p (d-log is a permutation on the numbers 1 to p− 1)

Combinatorial candidates:

• based on the subset-sum. f(x1, . . . , xn, S) := (
∑
i∈S xi, . . . , xn)

• Levin’s OWF. fL, ∃ OWF ⇒ fL is one-way

Note: Dlog is a permutation on the numbers 1 to p− 1. If g is a generator and the group is cyclic then when
you raise it to the power of x, you get all the possible x’s from 1 to p− 1. This is the permutation on these
numbers.

Definition 2.5 One way permutation. A function f is a one-way permutation if it satisfies the following
properties:

1. f is a one way function (OWF),

2. It is length-preserving (|f(x)| = |x|) and one-to-one (injective).

Why do we call it a one way permutation? For every particular input length, the function f is just a
permutation on all possible strings of that length.

Recall: Our overall goal is to be able to construct all symmetric primitives from the mild assumption that
OWFs exist.

The general path that one takes to construct symmetric key primitives:

OWF → weak-PRG (or a stretch-1 PRG) → poly-stretch PRG (of arbitrary polynomial length) → PRF.

2-1

2.1 From OWPs to stretch-1 PRGs

Given some seed drawn uniformly at random, s,

Why can’t we just take s1? You can imagine that f(s) could be one-way but leak the first bit of s. Then, the
first bit of s will not look random given f(s). Any fixed-bit isn’t really hidden by f(s). To claim that f(s) is
uniformly random we do not need the one-way property, we only need the permutation. To explain this, let’s
look at f(s) when s :←R {0, 1}n.

What’s the probability that f(s) is equal to some constant string a? Formally, what is Pr[f(s) = a : s←R

{0, 1}n]? We claim that this is the same as the probability that s is equal to f inverse of a (when s is chosen
at random from {0, 1}n), Pr[s = f−1(a) : s←R {0, 1}n]. Because f is a permutation we can always find an
inverse for a and this is the only case in which f(s) = a.

Pr[f(s) = a : s←R {0, 1}n] = Pr[s = f−1(a) : s←R {0, 1}n]

Now, we can use the fact that s is a uniformly random variable so that the probability that s is equal to
some fixed value f−1(a) is 1/2n as s is chosen uniformly at random. Thus, since s is uniformly random, then
f(s) is uniformly random. Intuitively, if I take all possoble strings of length n with uniform probability and
permute them around, I still get the uniform probability distribution.

Note: f(s) doesn’t look random if I also see s. That is, if one sees them together. If we only see f(s), then s
could be anything since we permuted the values around.

Definition 2.6 Hardcore bit. b : {0, 1}∗ → {0, 1} is a harcore bit of a function f : {0, 1}∗ → {0, 1}∗ if:

1. b(x) is efficiently computable from x,

2. b(x) is hard to predict from f(x)

Formally, ∀ PPT alg. A:

Pr[A(1n, f(x)) = b(x) : x←R {0, 1}n] ≤ 1

2
+ negl. (2.1)

A hardcore bit is defined for a specific function. The hardcore bit is a predicate of the functions in some
sense. In the security game of a hardcore bit, it’s hard to compute b(x) given f(x) as input to the algorithm.
The definition of every hardcore bit is coupled to a particular function. Intuitively, b(x) is partial information
about the input that the OWF hides.

In words, it is hard for A to predict the value of b(x) better than random, so we upper-bound it at negligibly
better than 1/2 (a random guess for a single bit in {0, 1} is 1/2, so there is a "naive algorithm" that always
succeeds with probability 1/2).

Theorem 2.1 Goldreich-Levin. Every function has a hardcore bit.

Idea: If we have a hardcore bit, then the PRG G(s) is defined as g(s) = f(s)‖b(s). Up until now the
condition on b(s) is that it’s hard to predict the value of b(s) from f(s). We need something stronger. We
need to say that b(s) actually looks random (so that g(s) looks random. Thankfully, if b(s) is hard to predict,
it follows that it has to be random looking (see official lecture notes for more).

A random linear combination of the bits of the input is hard-core. Given OWP f ,

2-2

• We extend it to get another OWP g(x‖r) := (f(x)‖r) where |x| = |r| = n

• b(x‖r) =
∑n
i=1 xi · ri mod 2

If f is one-way, then g is one-way. It’s easy to guess the bits of r given the output (since they’re copied as is)
but from f(x) it should be hard to guess x (so g is one-way).

We claim that b is hardcore for g. Given g(x‖r) it should be hard to find the inner product of xi and ri .
Even if A leaks partial information about x, the random linear combination of the bits of x should still be
hard to predict. HW1 Q3 focuses on this topic.

f ⇒ g : G(x‖r := f(x)‖r‖b(x, r) (2.2)

So we took as input a string of length 2n bits and output a string of length 2n+ 1. b is not only hard to
predict but it also looks random.

2.2 The Blum-Micali Construction

How do we increase the stretch of our PRG? The Blum-Micali construction. You can start with a 1-stretch
PRG and then use G′ to get a PRG that increases the length of the input.

We start with a weak PRG G that only increases the length of the input by 1.

Let G : {0, 1}n → {0, 1}n+1 be a PRG

We want to construct a different PRG G′ that will be much better. Takes n bits as input and outputs `(n)
bits where `(n) is poly in n.

Construct G′ : {0, 1}n → {0, 1}`(n)

To construct a larger output, we repeatedly apply G. Since the output of G is n+ 1 bits, we truncate the
output G(s) to be n bits so that we can continue to feed subsequent outputs to G. G(s0) = s1‖b1. We
repeatedly apply G `(n) times. Each n+ 1th bit is saved {b1, . . . , b`}. We can discard s` since it’s not used
as input for another computation of G.

Now we must prove that this is secure.

Theorem 2.2 G is a secure PRG ⇒ G′ is a secure PRG.

Claim 2.3 G′ is efficient (running time).

The running time of G′ is: tG′(n) = `(n)× tG(n) +O(`(n)). Since ` is poly and G′ applies the basic PRG G
a linear number of times, it’s quite efficient.

Claim 2.4 G′ is secure.

2-3

{
G′(s) : s←R {0, 1}n

}
≈c
{
y : y ←R {0, 1}n

}
(2.3)

That is, ∀PPT algorithm A

PRG distinguishing advantage of adversary A on PRG G’:

PRGAdv[A, G′] = |Pr[A(G′(s)) = 1 : s←R {0, 1}n]− Pr[A(y) = 1 : y ←R {0, 1}`(n)]| ≤ negl.(n) (2.4)

We will prove that these two distributions D0 and D1 using a hybrid argument.

2.3 Hybrid Argument

D0 is the pseudorandom distribution from the Blum-Micali construction.

Instead of running the PRG for ell steps, we’ll just run it for `− 1 steps. For example, for D1 we feed s into
G so that the input that produces b2 (recall that s will always be a truly random input). Di has i truly
random bits and `− i bits obtained from the PRG.

For example, D0 has 0 truly random output bits and all ` bits {b1, . . . , b`} are obtained from the PRG. D1

has 1 truly random bit, D2 has 2 truly random bits, and D` has ` truly random bits (we never run G in this
case).

Claim 2.5 The indistinguishability of every neighboring pair Di, Di+1 follows from that the basic PRG G is
secure.

Fix A to be some particular alg that tries to break G′. Let pi = Pr[A(y) = 1 : y ← Di]. We want to show
that |p0 − p`| = negl.

Telescopic Sequence and Triangle Inequality

|p0 − p`| = |p0 − p1 + p1 − p2 + p2 . . . p`−1 − p`| ≤
∑̀
i=1

|pi+1 − pi| (2.5)

Claim 2.6 ∀i = 1, . . . , `, |pi+1 − pi| ≤ negl(n).

The claim implies the theorem because if it is true that |pi+1 − pi| ≤ negl(n) for all i, then |p0 − p`| is
equivalent to:

`(n)× negl(n) = negl(n) (2.6)

The `(n) term comes from the number of terms in the sum (from i = 1 to `). Thus, |p0−p`| ≤ `(n)×negl(n) =
negl(n). The `(n) term is poly in n by construction, so multiplying poly × negl is still negl.

Proof. Suppose we have an algorithm A that tries to break G′ |pi+1 − pi| = ε(n). We construct B that is a
distinguisher for the basic PRG G.

2-4

Claim 2.7 The success probability of B is related to ε. Since G is a secure PRG, this implies that B cannot
break it with non-negl probability.

If B’s goal is to break G, the distinguisher B’s input is a string that is the same length as the output of the
PRG, n+ 1. Let this length n+ 1 string be called z. B works as follows:

On input z ∈ {0, 1}n+1:

1. Parse z as z = si‖bi where bi ∈ {0, 1}, si ∈ {0, 1}n

2. Choose b1, . . . , bi−1 ←R {0, 1}
(to generate the first i− 1 bits, just draw them uniformly at random b1 ←R {0, 1} , . . . , bi−1 ←R {0, 1}).

3. Compute bi+1, si+1 ← G(si), . . . b`, s` ← G(s`−1)

4. Set y ← b1, . . . , b`

5. Run and output A(y)

We have two cases:

1. z = G(s) for s ←R {0, 1}n. The output of B looks like b1 ←R {0, 1} . . . bi−1 ←R {0, 1} and use G to
get the remaining `− (i− 1) bits. This is exactly Di−1.

2. z ←R {0, 1}n+1. The output of B looks like b1 ←R {0, 1} . . . bi ←R {0, 1}. We then take bi ←R {0, 1},
si ←R {0, 1}n and run G on these so that the remaining construction (running G on si and bi and so
on) gets us bi+1 through b`. This is exactly Di.

Once it generates these distributions, it runs A on y ← b1, . . . , b`.

PRGADv[B, G] = |Pr[B(G(s)) = 1 : s←R {0, 1}n]− Pr[B(z) : z ←R {0, 1}n+1
]| (2.7)

= |Pr[A(y) = 1 : y ← Di−1]− Pr[A(y) = 1 : y ← Di]| (2.8)
= |pi−1 − pi| (2.9)
= ε(n) (2.10)

Since G is a secure PRG, ε(n) must be negl.

Note: This is a common proof construction in cryptography: You take one algorithm A that breaks that
primitive that you want to prove secure and you use it to construct B that breaks the primitive that you
assume to be secure.

To recap, we haev thus transformed OWP → hardcore bit → 1-bit stretch → poly-stretch PRG.

Now, we’d like to go from poly-stretch PRG to PRF.

2.3.1 Goldreich-Goldwasser-Micali (GGM) Construction

Recall: PRF takes two parameters, a key and an input F : {0, 1}λ × {0, 1}n → {0, 1}λ

2-5

Q.) Doesn’t the length of the output need to be length n? Actually, we can arbitrarily increase the output
length of the PRF from λ to n (the output length doesn’t matter very much). For example, we can run the
output of length λ through a PRG and get n output bits.

Given a PRG G : {0, 1}λ → {0, 1}2λ. How do we use a length-doubling PRG to construct a PRF?

Take as input our seed s (s0) and run it through G to get 2λ bits (s1). We can interpret these 2λ bits as a
function that takes a seed of length λ and an input of length 1-bit. s0 = F (s, 0) and s1 = F (s, 1). To increase
the input size of the PRF we repeat the process and feed F (s, 0) into G and feed F (s, 1) into G to get s00,
s01, s10, and s11. After log n steps in depth, we can construct a PRF that will take n bits as input. We don’t
need to explicitly construct the entire tree to compute the value of the PRF.

Where does the hybrid argument come in? In order to apply the PRG again for the security proof we need
for each output (and intermediate input) to be random.

2-6

3. COMMITMENT SCHEMES AND THE RANDOM ORACLE MODEL (4/14)

Recall: GGM construction is a way that goes from a PRG G that doubles its input ({0, 1}λ → {0, 1}2λ) to
a PRF F : {0, 1}λ × {0, 1}M → {0, 1}λ.

Idea: You start with some λ bit input, apply the PRG and get 2λ and iteratively build a tree n levels deep
to get 2n leaves. If you want to have a PRF that has an n bit input; you can pick any of these leaves as
output of the PRF.

Why is the hybrid argument necessary? Each leaf is going to look random because of the preceding layer. We
need a hybrid argument because the outputs are not random but pseudorandom. Input λ may be random
but each output of G is pseudorandom. In order to apply the PRG again for the security proof we need for
each output (and intermediate input) to be random, we use the hybrid argument to swap each intermediate
input with something that is truly random. We then apply the PRG again, and so on all the way down.

3.1 Commitments

Commitments (e.g., how to play rock, paper, scissors over the phone)

Definition 3.7 Commitment scheme. A commitment scheme allows you to commit to a message without
revealing it (like a locked box).

commit :M×R→ C commit(m, r)→ c (3.11)

We "open" a commitment by sending m, r. Commitments should have two properties:

1. Hiding: Seeing c says nothing about m. The notion for hiding is that for ∀m0,m1 ∈M

∀m0,m1 ∈M
{
commit(m0, r) : r ←R R

}
≈
{
commit(m1, r) : r ←R R

}
, (3.12)

2. Binding: After seeing c, we cannot change our mind about m. In other words, no PPT adversary A
can produce m0,m1 ∈M,m0 6= m1, r0, r1 ∈ R s.t. commit(m0, r0) = commit(m1, r1).

Q.) Is commit(m, r) = AES(r,m) a commitment? No. AES behaves like a PRF and it is hiding (if you take
m and r is unknown to the person who gets the commitment it should be difficult to find m). AES is not
necessarily binding as you could pick a different r′ and open it up to a different message.

3.1.1 Pedersen Commitments

• Public params: group G of prime order p where g, h ∈ G.

• Commitment: commit(m, r) = gmhr where m, r ∈ Zp

We want to ask whether it is hiding and biding:

1. Is it hiding? Yes. commit(m, r) is uniform in G. hr is a random element of the group and masks the
message that you’re trying to commit to.

2. Is it binding? Yes, assuming the hardness of dlog in G.

3-1

Recall: Discrete log assumption from CS255. The discrete log problem states that given h ∈ G, it is hard to
find x s.t. h = gx.

We can play a brief security game to show this.

Discrete log security game. Take an adversary A and a challenger. The challenger picks some random x and
raises gx to get h, sends (g, h) to A. Then the adversary attempts to find x. A sends x̂ back to the challenger
and wins if x̂ = x and it correctly retrieves x. The dlog assumption is that there’s no PPT A that can win
this security game and retrieve x with greater than negl probability.

3.1.2 Life advice regarding commitments on breaking dlog

Whenever you want to break dlog, you should try to get 2 representations of the same group element. That is,
if our goal is to take h and find the discrete log, find two different ways of finding h and solve the discrete log.

Suppose gm0hr0 = c = gm1hr1 :

c = gm0hr0 (3.13)
gm0hr0 = gm1hr1 (3.14)

gm0(gx)r0 = gm1(gx)r1 (3.15)

And thus,

m0 + xr0 = m1 + xr1 (3.16)

x =
m1 −m0

r0 − r1
(3.17)

In words, if you can find two different commitments (m0, r0), (m1, r1) that commit to the same commitment
c (two different ways of writing the same group element), you can break the discrete log assumption. Note,
r0 6= r1 otherwise it must be true that m0 = m1 and the LHS and RHS are the same representation (the
premise of this advice is that they are different representations).

3.1.3 Proving that Pedersen Commitments are Binding

We want to show that if dlog problem is hard in G → Pedersen commitment is binding. Suppose Adv A
breaks binding. We thus build an adversary B that uses A and wins the dlog game.

The intuition is that if you have an adversary that can break Pedersen commitment binding, then you can
build something that wins the dlog game. We know that the dlog game is hard to win, so surely we cannot
have an adversary that breaks the binding property of the Pedersen commitment.

Proof. Given A, build B that wins the dlog game against the dlog challenger.

The dlog game. Dlog challenger samples x←R Zq, h← gx and sends g, h to B. B waits for input from A to
do something with it before sending x̂ back to the dlog challenger.

3-2

The Pedereson binding game. B sends g, h to A. A sends (m0,m1, r0, r1) s.t. m0 6= m1 and commit(m0, r0) 6=
commit(m1, r1) back to B.

B passes on g, h as parameters to the Pedersen commitment. Since A can win the Pedersen commitment
game and get two different representations of the same commitment c that it needs to apply the life advice
from earlier, this will allow us to retrieve x.

Whenever A wins the binding game such that it breaks the binding of the Pedersen commitment, B can
produce x that is the discrete log of h. B wins the discrete log game with the same probability that A breaks
the binding property of Pedersen commitments.

Q.) Isn’t it an issue that g, h are fixed as public parameters? In our game, B chooses the parameters. Is this
an issue? No, because the binding property is supposed to bind the person who produces the commitment
(in this case, A). There are other times when this can be a problem, but we’ll punt that for later. Here, it
suffices to say that because the hiding property is unconditional, it’s okay for the person who’s going to be
receiving the commitments to pick the public parameters.

For the person sending the commitments, they could break hiding, so you have the person receiving the
commitment se the parameters. For the person receiving the commitments, they cannot can’t break the
hiding property by picking bad public parameters.

Why are Pedersen Commitments neat? They are additively homomorphic (i.e., you can add them up).

3.1.4 Additive Homomorphism

We claim that the following relationship holds: commit(m0, r0) · commit(m1, r1) = commit(m0 +m1, r0 + r1)

commit(m0, r0) · commit(m1, r1) = gm0hr0 · gm1hr1 (3.18)

= gm0+m1hr0+r1 (3.19)
= commit(m0 +m1, r0 + r1) (3.20)

In words, you can do some computation on a value you know nothing about. By adding up two commitments,
you get a new commitment that is a commitment to the sum of the constituent messages. Commitment
schemes aren’t the only scheme that has this property, there are encryption schemes that have it too (later in
the course, we will cover fully homomorphic encryption).

We don’t need the homomorphism for rock, paper, scissors over the phone. Is there a simpler commitment
scheme? Yes.

3.1.5 Random Oracles (for the uninitiated)

The random oracle model is a way to model hash functions. The random oracle model can be thought of as
a stronger assumption about hash functions. The result is that we can think of hash functions as random
functions:

H : X → Y s.t. H(x)←R Y (3.21)

In words, what this implies is that when we look at a hash function the output looks truly random. This is a
much stronger assumption than collision resistance and in fact immediately implies collision resistance. This

3-3

is used all over the place in cryptography. Pretty much any signature scheme used in practice is based on the
ROM. Examples:

• RSA full domain hash (we saw some of this in CS255)

• Most CCA secure public key encryption schemes

ex. Super easy commitments with hash functions in the ROM,

commit(m, r) = H(m, r) (3.22)

This is super easy because we don’t have to think about groups or exponentiation.

1. Is it hiding? Yes. If you don’t evaluate H on (m, r) then H(m, r) looks uniformly random. If r is big
enough, an adversary can guess r with < negl probability. Thus, H(m, r) is a PRF in the ROM too.

2. Is it binding? Yes. Breaking binding means m0,m1, r0, r1 s.t. H(m0, r0) = H(m1, r1). H is a random
function (that is collision resistant) by construction.

Q.) Is H(m) a commitment? No. It’s not hiding. If you have a guess on m you can just check H(m).

Q.) Can we use hash functions as PRFs? Yes, but not really. AES is much faster than the ROM. There are
other theoretical issues, but these are not the main reason.

It takes up a lot of space to write down a truly random function as every output of the function is unrelated
to every other output (no structure). If H were a truly random function, its description would be very large.
Hash functions in practice can be written down very concisely, so these are clearly not random functions.

Q.) Why is it called a model when everything else we’ve talked about has been called an assumption?

3.1.6 Random Oracles (for the initiated)

Why do cryptography proofs say things about real systems even if we miss things like side-channel attacks.
We can only build a model that we think reflects reality. We can prove statements within a model; the model
acts as a framework for assumptions and proofs. Ultimately, we have to decide on our own whether our model
matches reality. There’s nothin tthat says that our proofs are connected to reality.

All proofs in previous lectures follow the standard model. The ROM augments this by adding an oracle that
answers queries with evaluations of H. Everyone has access to the oracle.

The oracle allows us to sidestep the first stated problem of the ROM that truly random functions might have
very large descriptions. Instead of having to worry about how to conretely write down the full hash function,
we assume that an oracle exists and that we can ask the oracle certain questions.

We don’t think about how the oracle implements the hash function. We also assume that the oracle generates
answers to H and sends them back ot us.

As a heuristic, we replace the random oracle (RO) with a suitable* hash function. The random oracle has to
be determinsitic (if we query it at the same point twice, we must get the same answer).

Q.) What are suitable hash functions? Later we will discuss how to suitably discuss instantiation. SHA-256
is not a suitable hash function.

3-4

Q.) Is the random oracle assumed to run in polynomial time? Each query to the ROM is considered to be
constant time; it runs in unit time.

How do we construct proofs in the ROM? We will demonstrate this with an amazing PRF.j

3.1.7 An Amazing PRF

f(k, x) = H(x)k (3.23)

We will prove PRF security in ROM assuming the hardness of Decisional Diffie-Hellman (DDH).

Recall: DDH assumption. For a cyclic group G of order q with generator g,

{
g, gx, gy, gxy : x, y ←R Zq

}
≈C

{
g, gx, gy, gz : x, y, z ←R Zq

}
(3.24)

We want to prove that if there’s an adversary A that breaks the amazing PRF, then we can build an adversary
B that uses A to break DDH.

Diffie-Hellman assumption security game (under the standard model). We have some adversary A that can
break the PRF. We have B which we are going to build. B will interact with the DDH challenger. The goal
of B is to win the DDH game.

The DDH game. The DDH challenger is going to take x, y, z ←R Zq and then if b = 0 send X = gx, Y =

gy, Z = gxy to B. If b = 1 the DDH challenger will do the same thing, except that Z = gz instead. Bsends b̂
to the DDH challenger, who outputs 1 iff b̂ = b.

The PRF game. B is going to respond to questions from A. A is allowed to ask queries of the form "evaluate
the PRF at m". B responds with the evaluation f(m). A will be able to evaluate the PRF at many points
and will decide if it is interacting with a PRF or a random function. It will forward b̂ to B who forwards b̂ to
the DDH challenger as described.

This proof works in the standard model. Now we introduce some components involved in the ROM.

In the ROM, everyone has access to the random oracle. A is an algorithm that is allowed to interact with the
random oracle. A is allowed to make an additional query to the random oracle: "evaluate the random oracle
at m". B must respond with the evaluation of the random oracle at m. B needs to use A to produce b̂.

Central questions that B must address:

1. How will B respond to the different queries submitted to it by A? (How to answer the queries to the
random oracle)

2. How is B going to go from the b̂ it gets from A to the b̂ that it passes onto the DDH challenger? (How
to answer the PRF questions)

3.1.8 Responding to queries to the random oracle

Definition 3.8 Programming the random oracle. When an intermediate adversary impersonates the random
oracle and responds to queries to the random oracle at certain points with some chosen response.

3-5

Dirty trick (programming). B doesn’t actually use the random oracle, it just pretends. Whenever A asks for
a query to the random oracle, it will sample some value α←R Zq and set H(m)← Xα. Xα is distributed
uniformly at random in G. Because of this, A can’t tell that this response is not from the random oracle. In
other words, A is expecting to interact with a random oracle and a random oracle is something that responds
with evaluations of a random function. Here, B is generating responses that look totally random so A doesn’t
know whether it is interacting with the random oracle or with B acting as the random oracle.

3.1.9 Responding to queries to the PRF

Proof.

• Sample α←R Zq, set H(m)← Xα (response to the random oracle)

• Send Zα (response to queries to F)

Let’s consider the two possible worlds:

• b = 0, Zα = (gxy)α = (Xα)y. Thus, the values that B is presenting to A is consistent with PRF
evaluations with key y.

• b = 1, Zα = (gz)α = uniformly random. Thus, the values that B is presenting to A is what looks like
evaluations of a random function.

Recalling that A is a distinguisher in the PRF game, it can give B a b̂ that distinguishes whether B got a
real Diffie-Hellman with xy or z. This means that B has the same advantage in the DDH game as A has in
the PRF game. Because the DDH game is assumed to be hard, A should not exist.

Q.) Why does A need to use B to make random oracle queries? Why can’t it query the random oracle on its
own (since everyone has access to the random oracle)? B uses A as a subroutine, so it fills in the role of the
random oracle. We, in writing the proof, get to pick how A and B act in the proof.

3.1.10 Remaining open problems with the ROM

• The ROM is a heuristic, but it seems to work well in practice and gives us very fast schemes. In
applications, we replace the random oracle with a hash function.

• There are some schemes that are (contrived) schemes that are secure in the ROM, but if we were to
replace the random oracle with any hash function, they will always be insecure in the standard model
(this is upsetting)! Thankfully, these schemes are largely contrived and thus far don’t seem to have
ramifications for real world crypto systems. In particular, as of now there is no known attack to real
world crypto systems that utilize weaknesses in the ROM.

• Some people don’t like the "dirty trick" programming since there’s no real analog to programming a
random oracle with a hash function that is fixed in advance (and you can’t change its values).

Despite these, pretty much all real world crypto systems use the ROM.

3-6

3.1.11 Suitable hash functions to replace random oracles

Q.) Why not SHA256? It is a Merkle-Damgard function and is therefore susceptible to length-extension
attacks. Thus, vanilla SHA256 does not look truly random in the ROM.

If you want to use SHA256, you should use it in an HMAC with key 0 : H(opad‖H(ipad‖m)) (equivalent to
running HMAC without the key). You can also use SHA512/256 (just SHA512 with the second half thrown
out).

Recall: It is difficult to implement your own crypto!

3-7

4. REAL WORLD CRYPTANALYSIS (4/16)

4.1 RSA

4.1.1 Infineon Attack

Factor 2048-bit RSA key p = kM + (65537a mod M) with 234 guesses. For each guess, do Coppersmith
attack to recover k, then check if you found p. This is roughly 140 CPU years. This might seem like a lot,
but the attack is highly parallelizable.

4-1

5. DISCRETE-LOG ALGORITHMS: BABY STEP GIANT-STEP, POLLARD-RHO
& INDEX CALCULUS (4/21)

Given a group G of prime order q (i.e. q is some large prime), a generator g that gives us
{
1, g, . . . gq−1

}
.

Guven h = gx for x←R Zq, find x. The naive algorithm is O(q) group operations, which is not efficient.

5.1 Baby-Step Giant-Step Algorithm

Let B = d√qe. We can write our discrete log x in base B, x = a+B · b where a, b ∈ {0, 1, . . . B − 1}. This
gives us a different way of writing the dlog problem:

h = gx = ga+B·b (5.25)

h · g−a = gB·b (5.26)

5-1

6. INTRODUCTION TO ELLIPTIC CURVES (4/23)

Q.) Why think about groups differently from from integers (mod p)?

6.1 Let G be a group of prime order

We use this phrase all the time (for dlog, CDH, DDH). These assumptions are not true for just any group.
One example of a group of prime order where dlog is easy is the additive group of integers mod p under
addition (Zp,+). So, g ⊕ x = h and what would have been exponentiation is just multiplication (⊕ denotes a
placeholder for some group operation; in this case the operation is addtion). So the dlog in this group is just
finding x s.t. gx = h, x = hg−1.

Q.) If some groups are good and some groups are bad, what groups do we use? The old way: Start with the
multiplicative group (mod p) i.e., the integers (mod p) under multiplication, Z∗p = {1, 2, . . . , p− 1}. The
problem is that this group, |Z∗p| = p− 1 which is not of prime order. To solve this, we work in a subgroup of
order q.

Definition 6.9 Subgroup. All elements in a subgroup follow the rules of the larger group and are elements
of the larger group.

Q.) How did we choose q and how do we choose the subgroup? When we choose p we also choose safe primes.

Definition 6.10 Safe primes. A safe prime p is one where p = 2q + 1 for some q where q is also prime.

6.1.1 The bigger issue

The bigger issue is that dlog in Z∗p is a little too easy. There exist subexponential algorithms for dlog F∗p that
takes time 2Õ(3

√
logp). For λ = 128-bits of security, NIST recommends to choose |p| = 3072 bits. This is quite

large and slow. This is the old way of doing things, and it’s gone out of style.

Q.) What now? We need to look at some other group structure.

6.1.2 Detour

Hobbies in antiquitites involved finding points on curves.

• Pythagoras: Find rational (x, y) ∈ Q×Q s.t. x2 + y2 = 1.

• Fermat: Find integer points on curves: (x, y, z) ∈ Z× Z× Z s.t. x3 + y3 = z3 (Fermat’s Last Theorem)

• Diophantus: (x, y) ∈ Q×Q s.t. y2 = x3 − x+ 9 (Elliptic Curve)

6.2 Elliptic Curves

y2 = x3 +Ax+B s.t. 4a3 + 27b2 6= 0 (6.27)

How do we systematically find points on the curve?

1. If (x, y) is on the curve, then (x,−y) is too.

6-1

2. Chord method

3. Tangent method (variant of the chord method)

Idea: You can find new points on a curve by flipping and drawing lines.

Q.) Do points on the curve form a group? Operation: "draw line and flip (about the x-axis)". Almost.

Let Ẽ(Q) be the set of rational points on the curve (Q × Q). Let the operation "draw line and flip" be
denoted �. � : Ẽ(Q)× Ẽ(Q)→ Ẽ(Q). This does not have closure.

(x, y)� (x,−y)? (6.28)

We add a "point at infinity" denoted by 0. This is what we do when we would otherwise have an undefined
slope if we were to draw a line at two points.

We add a few more edge case definitions to make elliptic curves like a group.

1. 0� 0 = 0

2. (x, y)� 0 = (x, y)

3. 0� (x, y) = (x, y)

Let E(Q) = Ẽ(Q) ∪ {0}.

Q.) What does it take to be a (commutative) group?

1. Closure: For all a, b ∈ G, a · b ∈ G

2. Associativity: for all a, b, c, e, d (this is why the "flip" is necessary; if you change the order in which you
do the multiplications without the "flip", you will get different points)

3. Identity: There exists e ∈ G s.t. for all a ∈ G, e · a = a · e = a

4. Inverses: For each a ∈ G, there exists b ∈ G (denoted as a−1) s.t. a · b = c · a = e

5. Commutativity: For all a, b ∈ G, a · b = b · a

6.3 Elliptic curves over finite fields

So far we’ve been talking about elliptic curves over rational points; there are infinitely many rational points.
In crypto we’re interested in groups that are finite size.

E(Q)→ E(Fp) (6.29)

Theorem 6.8 Hasse’s Theorem. This means that if you have an elliptic curve over a finite field, the number
of points on that curve will be close to the prime p; within 2

√
p (additively). This number can be computed

efficently via Schoof’s algorithm.

|E(Fp)| = p+ 1 + t |t| ≤ 2
√
p (6.30)

In other words, the number of points in the curve |E(Fp)| is in the range [p+ 1− 2
√
p, p+ 1 + 2

√
p], if you

pick a point exactly in the middle i.e., p then you will have an easy discrete log.

6-2

We can’t just use any elliptic curve. We need to choose one where dlog is hard. For example, an elliptic curve
over Fp should have q points for a prime q (not p points). If the curve is over p and the size of the finite field
is also p, then dlog is always easy (sub-exponential, not yet polynomial).

Once we have such a group, we can use it for crypto. Let g be a generator for Fp. This means that g acts as
a "base point" or a point on the curve that generates a cyclic subgroup. This means that every point in the
subgroup can be reached by repeated addition of the generator point (in the case below, adding g to itself α
times).

g ∈ E(Fp), α ∈ N, αg = g � g . . .� g︸ ︷︷ ︸
α

(6.31)

Or in more standard notation:

X ∈ E(Fp), α ∈ N, αX = X �X . . .�X︸ ︷︷ ︸
α

(6.32)

6.4 From elliptic curves back to the group abstraction

When we say we have a generator element g of group G of prime order q, what we mean is that we have a
prime p that will give us Fp, parameters A,B ∈ Fp s.t. y2 = x3 +Ax+B is an elliptic curve and we have a
"base point" or generator g ∈ Fp × Fp on the curve E(Fp) that has order q. For clarity, we will refer to the
base point generator as X from here onward.

1. Easy: We have an element g of group G of prime order q

2. More involved: We have a prime p that will give us Fp, parameters A,B ∈ Fp s.t. y2 = x3 +Ax+B
is an elliptic curve and we have a "base point" or generator g ∈ Fp × Fp on the curve E(Fp) that has
order q.

6.4.1 Diffie-Hellman key exchange with elliptic curves

1. Alice picks α←R Zq and sends gα

2. Bob picks gβ

3. Alice outputs gβα

4. Bob outputs gαβ

The analogous dlog claim in elliptic curves is that given points on the curve Q,P ∈ E(Fp), finding k s.t.
P = kQ is difficult. Given the domain parameters: {p, a, b,X, n, h}, y2 = x3 + ax+ b

• p: field modulo p (defines what finite field the curve is defined over)

• a, b: curve parameters

• X: generator point that generates a cyclic subgroup of order q

• q: order of X

• h: cofactor of the cyclic subgroup generated by X, h =
|E(Z/Zp)|

q (ideally, h = 1)

6-3

the protocol proceeds as follows:

1. Bob picks a private key β ←R Zq (i.e., 1 ≤ β ≤ q − 1) and computes B = βX

2. Alice picks a private key α←R Zq (i.e., 1 ≤ α ≤ q − 1) and computes A = αX

3. Bob receives A = αX = (xA, yA)

4. Alice receives B = βX = (xB , yB)

5. Bob computes P = βαX

6. Alice computes P = αβX

7. Bob and Alice now have the same information, a point P on the curve, this point consists of an ordered
pair.

An adversary can learn about all of the above parameters (and also the messages A,B) but without the
secret keys α, β or the ability to solve dlog, they will not be able to determine P .

6-4

7. PAIRINGS-BASED CRYPTOGRAPHY (4/28)

7.1 Pairings

Pairings are an application of modern number theory to cryptography. They exploit additional structure of
elliptic curve groups to enable many applications.

Definition 7.11 Pairing. A pairing is a mapping e between groups e : G×G→ GT with three properties:

1. Bilinearity. e(ga, gb) = e(g, g)ab

2. The map is non-degenerate. If g generates the source group, then the pairing e(g, g) applied to g with
itself must generate the target group GT .

3. Efficiency. We want the mapping e to be efficient to compute.

Q.) What is an example of a mapping that is bilinear and efficient but degenerate? e(g, g) = 1.

Q.) What is an example of a mapping that is bilinear and non-degenerate but not efficient? Computational
Diffie-Hellman (CDH) e(g, g)→ gab

If a pairing e : G × G → GT exists, is DDH in G hard? Formally, is it difficult to distinguish between
(g, ga, gb, gab) and (g, ga, gb, gr)?

(g, ga, gb, gab) ≈? (g, ga, gb, gr) (7.33)

Once you have a pairing you can no longer assume that DDH is hard. We can use pairings to distinguish
between the two distributions (in particular, to determine that r 6= ab):

e(ga, gb) = e(g, g)ab (7.34)

= e(g, gab) (7.35)
6= e(g, gr) (7.36)

7.1.1 Why pairings?

Discrete-log attacks in elliptic curve groups E(Fp). Some curves E(Fp) have a pairing to a subgroup (target
group) of finite order Fpα for a small α (e.g., α = 2). In particular, this subgroup is a multiplicative group
where we’re working with the integers mod pα. In this group, dlog is much easier. We have subexponential
time algorithms.

To solve this, we map dlog over the elliptic curve E(Fp) to dlog over the finite field Fpα .

Complexity:

• dlog over the elliptic curve E(Fp) : O(
√
p)

• dlog over the elliptic curve E(Fp) : 2Ô(3
√
α log p) (subexponential; much smaller)

Avoid curves where order of pairing is too small (pairings that result in dlog attacks that are too efficient).
We still want to use pairings despite the fact that it is vulnerable to this attack because it is an amazing
feature.

7-1

7.1.2 Three-party key exchange

References

[1] Boneh, D., and Shoup, V. A Graduate Course in Applied Cryptography. 2019.

7-2

	How do we compare hardness in symmetric cryptography?
	Connections between basic primitives
	Example candidates for OWFs
	From OWPs to stretch-1 PRGs
	The Blum-Micali Construction
	Hybrid Argument
	Goldreich-Goldwasser-Micali (GGM) Construction

	Commitments
	Pedersen Commitments
	Life advice regarding commitments on breaking dlog
	Proving that Pedersen Commitments are Binding
	Additive Homomorphism
	Random Oracles (for the uninitiated)
	Random Oracles (for the initiated)
	An Amazing PRF
	Responding to queries to the random oracle
	Responding to queries to the PRF
	Remaining open problems with the ROM
	Suitable hash functions to replace random oracles
	RSA
	Infineon Attack
	Baby-Step Giant-Step Algorithm
	Let G be a group of prime order
	The bigger issue
	Detour
	Elliptic Curves
	Elliptic curves over finite fields
	From elliptic curves back to the group abstraction
	Diffie-Hellman key exchange with elliptic curves

	Pairings
	Why pairings?
	Three-party key exchange

